On the Mechanism of Polaritonic Rate Suppression from Quantum Transition Paths

Abstract: 

Polariton chemistry holds promise for facilitating mode-selective chemical reactions, but the underlying mechanism behind the rate modifications observed under strong vibrational coupling is not well understood. Using the recently developed quantum transition path theory, we have uncovered a mechanism of resonant suppression of a thermal reaction rate in a simple model polaritonic system consisting of a reactive mode in a bath confined to a lossless microcavity with a single photon mode. We observed the formation of a polariton during rate-limiting transitions on reactive pathways and identified the concomitant rate suppression as being due to hybridization between the reactive mode and the cavity mode, which inhibits bath-mediated tunneling. The transition probabilities that define the quantum master equation can be directly translated into a visualization of the corresponding polariton energy landscape. This landscape exhibits a double funnel structure with a large barrier between the initial and final states.

Author: 
Anderson MC
Limmer DT
Publication date: 
July 26, 2023
Publication type: 
Journal Article