A room temperature polar magnetic metal

Abstract: 

The emergence of long-range magnetic order in noncentrosymmetric compounds has stimulated interest in the possibility of exotic spin transport phenomena and topologically protected spin textures for applications in next-generation spintronics. Polar magnets, with broken symmetries of spatial inversion and time reversal, usually host chiral spin textures. This work reports on a wurtzite-structure polar magnetic metal, identified as AA-stacked (Fe0.5Co0.5)5GeTe2, which exhibits a Néel-type skyrmion lattice as well as a Rashba-Edelstein effect at room temperature. Atomic resolution imaging of the structure reveals a structural transition as a function of Co-substitution, leading to the emergence of the polar phase at 50% Co. This discovery reveals an unprecedented layered polar magnetic system for investigating intriguing spin topologies, and it ushers in a promising new framework for spintronics.

Author: 
Zhang H
Shao YT
Chen R
Neaton JB
Fischer P
Muller D
Birgeneau R
Ramesh R
Publication date: 
April 6, 2022
Publication type: 
Journal Article