High- Pressure Chemistry of Hydrocarbons Relevant to Planetary Interiors and Inertial Confinement Fusion

Abstract: 

Diamond formation in polystyrene (C8H8)n, which is laser-compressed and heated to conditions around 150 GPa and 5000 K, has recently been demonstrated in the laboratory [Kraus et al., Nat. Astron. 1, 606–611 (2017)]. Here, we show an extended analysis and comparison to first-principles simulations of the acquired data and their implications for planetary physics and inertial confinement fusion. Moreover, we discuss the advanced diagnostic capabilities of adding high-quality small angle X-ray scattering and spectrally resolved X-ray scattering to the platform, which shows great prospects of precisely studying the kinetics of chemical reactions in dense plasma environments at pressures exceeding 100 GPa.

Author: 
Kraus
Hartley
Frydrych
Publication date: 
May 23, 2018
Publication type: 
Journal Article