Bacteria Photosensitized by Intracellular Gold Nanoclusters for Solar Fuel Production

Abstract: 

The demand for renewable and sustainable fuel has prompted the rapid development of advanced nanotechnologies to effectively harness solar power. The construction of photosynthetic biohybrid systems (PBSs) aims to link preassembled biosynthetic pathways with inorganic light absorbers. This strategy inherits both the high light-harvesting efficiency of solid-state semiconductors and the superior catalytic performance of whole-cell microorganisms. Here, we introduce an intracellular, biocompatible light absorber, in the form of gold nanoclusters (AuNCs), to circumvent the sluggish kinetics of electron transfer for existing PBSs. Translocation of these AuNCs into non-photosynthetic bacteria enables photosynthesis of acetic acid from CO2. The AuNCs also serve as inhibitors of reactive oxygen species (ROS) to maintain high bacterium viability. With the dual advantages of light absorption and biocompatibility, this new generation of PBS can efficiently harvest sunlight and transfer photogenerated electrons to cellular metabolism, realizing CO2 fixation continuously over several days.

Author: 
Hao Zhang
Hao Liu
Zhiquan Tian
Dylan Lu
Yi Yu
Stefano Cestellos-Blanco
Kelsey Sakimoto
Peidong Yang
Publication date: 
October 1, 2018
Publication type: 
Journal Article