Broadly Tunable Atmospheric Water Harvesting in Multivariate Metal–Organic Frameworks

Abstract: 

Development of multivariate metal–organic frameworks (MOFs) as derivatives of the state-of-art water-harvesting material MOF-303 {[Al(OH)(PZDC)], where PZDC2– is 1H-pyrazole-3,5-dicarboxylate} was shown to be a powerful tool to generate efficient water sorbents tailored to a given environmental condition. Herein, a new multivariate MOF-303-based water-harvesting framework series from readily available reactants is developed. The resulting MOFs exhibit a larger degree of tunability in the operational relative humidity range (16%), regeneration temperature (14 °C), and desorption enthalpy (5 kJ mol–1) than reported previously. Additionally, a high-yielding (≥90%) and scalable (∼3.5 kg) synthesis is demonstrated in water and with excellent space-time yields, without compromising framework crystallinity, porosity, and water-harvesting performance.

Author: 
Zheng Z
Hanikel N
Lyu H
Yaghi OM
Publication date: 
November 29, 2022
Publication type: 
Journal Article