Ribosomes are at the core of the central dogma of life. They perform the last major step of gene expression by translating the information written in the nucleotide codon sequences into the amino acid sequence of a protein. This is a complex mechanochemical process that requires the coordination of multiple dynamic events within the ribosome such as the precise timing of decoding and the subsequent translocation along the mRNA. We have previously used a high-resolution optical tweezers instrument with single-molecule fluorescence capabilities (“fleezers”) to study how ribosomes couple binding of the GTPase translation elongation factor EF-G with internal conformational changes to unwind and progress across the mechanical barriers posed by mRNA secondary structures. Here, we present a detailed description of the procedures for monitoring two orthogonal channels (EF-G binding and translocation) by single actively translating ribosomes in real-time, to uncover the mechanism by which they harness chemical energy to generate mechanical force and displacement.
Abstract:
Publication date:
September 6, 2022
Publication type:
Journal Article