Fundamental limitations on photoisomerization from thermodynamic resource theories

Abstract: 

Small, out-of-equilibrium, and quantum systems defy simple thermodynamic expressions. Such systems are exemplified by molecular switches, which exchange heat with a bath. These molecules can photoisomerize, or change conformation, or switch, upon absorbing light. The photoisomerization probability depends on kinetic details that couple the molecule's energetics to its dissipation. Therefore, a simple, general, thermodynamic-style bound on the photoisomerization probability seems out of reach. We derive such a bound using a resource theory. The resource-theory framework is a set of mathematical tools, developed in quantum information theory, used to generalize thermodynamics to small and quantum settings. From this toolkit has been derived a generalization of the second law, the thermomajorization preorder. We use thermomajorization to upper-bound the photoisomerization probability. Then, we compare the bound with an equilibrium prediction and with a Lindbladian model. We identify a realistic parameter regime in which the Lindbladian evolution saturates the thermomajorization bound. We also quantify the energy coherence in the electronic degree of freedom, and we argue that this coherence cannot promote photoisomerization. This work illustrates how quantum-information-theoretic thermodynamics can elucidate complex quantum processes in nature, experiments, and synthetics.

Author: 
N. Yunger Halpern
D.T. Limmer
Publication date: 
November 15, 2018
Publication type: 
Journal Article