Kinetics of moisture-induced phase transformation in inorganic halide perovskite

Abstract: 

The high-temperature (high-T) phase of cesium lead iodide (CsPbI3) presents great promise for photovoltaic applications; however, exposure to ambient moisture at room temperature transforms it into its less-desirable low-temperature (low-T) phase with a larger band gap. While there have been theoretical predictions on the influence of moisture level on the phase transformation kinetics, the corresponding quantitative experimental evidence has remained limited. Tracking CsPbI3 phase transformation under controlled relative humidity (RH), we find that rising RH increases the nucleation rate of low-T CsPbI3 exponentially, but has a weak effect on its growth. The overall transformation is nucleation limited, with higher RH leading to a lower nucleation barrier. Finally, we find that heating between 40°C and 80°C facilitates water desorption and suppresses phase transformation. Our findings elucidate the relationship between moisture and the phase energetics of CsPbI3, which can serve as references for thin film applications of CsPbI3 and future designs of stable photovoltaics systems.

Author: 
Lin Z
Zhang Y
Gao M
Steele JA
Louisia S
Yu S
Quan LN
Lin C-K
Limmer DT
Yang P
Publication date: 
May 27, 2021
Publication type: 
Journal Article