Large Cages of Zeolitic Imidazolate Frameworks

Abstract: 

The design and synthesis of permanently porous materials with extended cage structures is a long-standing challenge in chemistry. In this Account, we highlight the unique role of zeolitic imidazolate frameworks (ZIFs), a class of framework materials built from tetrahedral nodes connected through imidazolate linkers, in meeting this challenge and illustrate specific features that set ZIFs apart from other porous materials. The structures of ZIFs are characteristic of a variety of large, zeolite-like cages that are covalently connected with neighboring cages and fused in three-dimensional space. In contrast to molecular cages, the fusion of cages results in extraordinary architectural and chemical stability for the passage of gases and molecules through cages and for carrying out chemical reactions within these cages while keeping the cages intact. The combination of the advantages from both cage chemistry and extended structures allows uniquely interconnected yet compartmentalized void spaces inside ZIF solids, rendering their wide range of applications in catalysis, gas storage, and gas separation.

While the field of ZIFs has seen rapid development over the past decade, with hundreds of ZIF structures built from dozens of different cages of varying composition, size, and shapes reported, rational approaches to their design are largely unknown. In this Account, we summarize a vast number of cages formed in reported ZIFs and then review how the thermodynamic factors and traditional guest-templating strategies from zeolites influence the formation of cages. We highlight how the link–link interactions perform in the ZIF formation mechanism and serve as a means to target the formation of frameworks containing cages of specific sizes with structures exhibiting a level of complexity as yet unachieved in discrete coordination cages. For example, the giant ucb cage features a dimension of 46 Å and the complex moz cage is constructed from as many as 660 components.

With the finding of these large and complex cages in ZIFs, we envision that the collection of cage structures will further be diversified by a mixed-linker approach utilizing a more complex combination of link–link interactions or by creating multivariant (MTV) systems that have been realized in other framework materials yet not widely employed in ZIFs. The more complicated cage structures can provide extra variations in chemical environments, and in addition to that, MTV systems can generate inhomogeneity inside each type of cage structure. The fused cages at such complexity that are difficult to be realized in solution environments will potentially enable more complex materials for smart applications.

Author: 
Wang H
Pei X
Kalmutzki MJ
Yang J
Yaghi OM
Publication date: 
February 16, 2022
Publication type: 
Journal Article